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Abstract. The nonlinear dust acoustic waves in a dusty plasmas with the combined effects of non-adiabatic
dust charge fluctuation and higher-order transverse perturbation are studied. Using the perturbation
method, a Kadomtsev-Petviashvili (KP) Burgers equation that governing the dust acoustic waves is de-
duced for the first time. A particular solution of this KP Burgers equation is also obtained. It is show that
the dust acoustic shock waves can exist in the KP Burgers equation.

PACS. 52.35.Sb Solitons; BGK modes – 52.35.Mw Nonlinear phenomena: waves, and nonlinear wave
propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects,
etc.)

1 Introduction

Recently, nonlinear wave phenomenon in dusty plasmas
have been received considerable attention. Theoretical
studies indicate [1–6] that the presence of the charged dust
grains in a plasma would modify the collective behavior
of a plasma, as well as excite new modes. In reality, the
charge on the dust grain varies both with space and time
due to electron and ion currents flowing into or out of
the dust grain, as well as other processes such as photo-
emission of electrons. Those cause the dust charge fluctua-
tions. So, the dust charge becomes a new dynamic variable
and its dynamic nature would be important for studying
the behavior of dusty plasmas. Under the assumption of
adiabatic (τch/τd = 0) and non-adiabatic (τch/τd is small
but finite) dust charge variation, where τch is the charg-
ing time scale and τd is the hydrodynamical time scale,
recent studies indicate [7–11] that the dust charge fluc-
tuation would effects the wave mode properties and led
to some new aspects of dusty plasmas. While the viscos-
ity, particle reflection, interparticle collisions, and Landau
damping can led to the energy dissipation, the nonadia-
baticity of the dust charge fluctuation provides an alter-
nate physical mechanism causing the dissipation. Assum-
ing small but finite τch/τd, theoretical studies show [12,13]
that the dust charge fluctuation can led to a strong dissi-
pation of the wave because of a phase difference between
the dust charge fluctuation and the wave. The nonlin-
ear investigations indicate [10,11] that the nonlinear dust
ion acoustic wave (dust acoustic wave) is governed by the
Korteweg-de Vries (KdV) Burgers equation and the dust
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ion acoustic (dust acoustic) shock wave is generated due
to the dissipation caused by the non-adiabatic charge vari-
ation of the dust particles. But all previous investigations
for the dust charge fluctuation effects are focused on the
one-dimensional case. However, a purely one-dimensional
picture cannot explain the observed wave phenomena in
the low altitude and higher altitude auroral regions. The
waves structure and stability in this higher dimensional
system will be modified because the anisotropy is intro-
duced into the system. For example, at least some trans-
verse perturbations will always exist in the higher di-
mensional system even if the system is un-magnetized.
Therefore, in present paper, we study the nonlinear dust
acoustic waves under the higher order transverse pertur-
bation by incorporating the dust charge fluctuation effect.
Using the perturbation method, a Kadomtsev-Petviashvili
(KP) Burgers equation governing the dust acoustic wave
is deduced. The exact wave frame solution of this KP
Burgers equation is obtained. It is show that the dust
acoustic shock wave can exist in the KP Burgers equation.

2 Governing equations

Consider the dust acoustic waves propagating in a col-
lisionless un-magnetized plasma whose constituents are
Bolzmann distributed electrons, ions, and massive high
negatively charged warm adiabatic dust grains. The non-
adiabatic dust charge fluctuations are also considered.
Then the dust dynamics can be described by the fol-
lowing two-dimensional set of continuity, momentum,
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and Poisson’s equations:
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where σd = Td/zdTe, δ = ni0/ne0, σi = Ti/Te. The vari-
ables are normalized as follows: t = ωpdt

′, x = x′/λD,
ud = u′d/cd, φ = eφ′/Te, (ne, ni) = (n′

e, n
′
i)/zdnd0,

nd = n′
d/nd0. Here ωpd = (z2

de
2nd0/4πmd)1/2, λD =

(4πTe/zdnd0e2)1/2, cd = (zdTe/md)1/2 are the dusty plas-
mas frequency, dust Debye length, and dust acoustic ve-
locity, respectively. The dust charge Q = −zde+ q, where
q is the fluctuating dust charge, becomes (q − 1), normal-
ized in units of the equilibrium dust charge zde. The nor-
malized charge variable q is determined by the following
normalized orbital motion limited charge current balance
equation [12,14]
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)
=
τch
zde
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where Ie and Ii are the electron and ion current, respec-
tively. The normalized expressions for the electron and ion
currents for spherical dust grains with radius a are

Ie = −πa2e

(
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)1/2
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where z = zde
2/aTe. τd ≈ ω−1

pd is the dust oscillation time
scale and

τch =

[
a

(2π)1/2

ω2
pi

Vthi
(1 + z + σ)

]−1

is the charging time scale. Here Vthi is the ion thermal
velocity. Equations (1–7) govern the dynamics of fully non-
linear dust acoustic waves in a warm dusty plasmas.

3 Derivation of the KP-Burgers equation

In order to investigate the nonlinear propagation of dust
acoustic wave in the plasma, we employ the perturba-
tion technique to obtain the KP-Burgers equation. The
independent variables are stretched as ξ = ε1/2(x − v0t),
η = εy, and τ = ε3/2t, where ε is a small parameter and

v0 is the velocity of dust acoustic wave. The dependent
variables are expanded as

nd = 1 + εn1 + ε2n2 + ..., (8)

ud = εu1 + ε2u2 + ..., (9)

vd = ε3/2v1 + ε5/2v2 + ..., (10)

φ = εφ1 + ε2φ2 + ..., (11)

q = εq1 + ε2q2 + ... (12)

To make the nonlinear perturbation consistent, we as-
sume that τch/τd is small and is proportional to ε1/2. Thus
we take

τch
τd

= µε1/2 (13)

where µ is a finite quantity of the order of unity. Substi-
tuting the expression (8–13) into equations (1–7) and col-
lecting the terms in the different powers of ε, for the lowest
order equation, we can obtain the following relations:

v0n1 = u1, (14)

v0u1 = 3σdn1 − φ1, (15)[
1

1 − δ
+

δ

σi(1 − δ)

]
φ1 − q1 + n1 = 0 (16)

q1 = −β1φ1. (17)

From equations (14–17), the wave velocity v0 is also ob-
tained as

v2
0 = 3σd +

1
β1 + 1

1−δ + δ
σi(1−δ)

(18)

where δ = ni0/ne0 and

β1 =
(z + σi)[(1 − z)(1 + σi) + z2/2]
zσi[(1 − z)(1 + z + σi) + z2/2]

· (19)

The variable β1 stand for the dust charge fluctuation ef-
fect. We can also obtain the next higher order y compo-
nent of the momentum equation

v0
∂v1
∂ξ

= 3σd
∂n1

∂η
− ∂φ1

∂η
· (20)

To next higher order in ε, from the continuity equation,
the x-component of the momentum equation, Poisson’s
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equation, and charge balance equation, we obtain
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where
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zσi(1 − z + z2/2)(1 + z + σi)

, (25)
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Substituting the above derived expressions of equa-
tions (14–17), and equation (20) into equations (21–24)
and eliminating the term n2, u2, φ2, and q2, then we de-
duce the following KP-Burgers equation for dust acoustic
wave in the plasma with dust charge fluctuation effect
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2
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1
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2
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Note that when the Burgers term C (introduced by the
dust charge fluctuation) vanish, the KP-Burgers equa-
tion (28) reduce to the ordinary KP equation. On the other
hand, when the transverse perturbation omitted, the KP-
Burgers equation (28) will reduce to the ordinary KdV
Burgers equation.

4 Shock wave solution of KP-Burgers
equation

For KdV Burgers equation, the wave breaking due to the
nonlinearity is balanced by the combined action of disper-
sion and dissipation, then a dispersive shock wave is gen-
erated. Now let we consider the wave propagation in the
plasma with both the presence of the non-adiabatic dust
charge fluctuation and transverse perturbation effects. On
transforming to the wave frame

θ = k1ξ + k2η − ωτ. (33)

The KP-Burgers equation (28) reduces to

k1
d
dθ

[
−ωdφ

dθ
+Ak1φ

dφ
dθ

+Bk3
1

d3φ

dθ3
− Ck2

1

d2φ

dθ2

]

+Dk2
2

d2φ

dθ2
= 0 (34)

where k1 and k2 are the wave numbers in x and y di-
rections. Imposing the boundary conditions for localized
perturbation, viz. φ → 0, dφ/dθ → 0, d2φ/dθ2 → 0, and
d3φ/dθ3 → 0 at θ → ∞, equation (34) reduces to

Bk4
1

d2φ

dθ2
− Ck3

1

dφ
dθ

+
1
2
Ak2

1φ
2 + (Dk2

2 − ωk1)φ = 0. (35)

This second-order equation can be written as a system of
two first-order equations

dφ
dθ

= ψ (36)

dψ
dθ

=
C

Bk1
ψ − A

2Bk2
1

φ2 − 1
Bk4

1

(Dk2
2 − ωk1)φ. (37)

The equations of the system (36–37) have two fixed points
(φ∗1, ψ

∗
1) = (0, 0) and (φ∗2, ψ

∗
2) = (− 2(Dk2

2−ωk1)

Ak2
1

, 0). It is
easy to analyze that the second one (φ∗2, ψ

∗
2) is a saddle

point while the first one (φ∗1, ψ∗
1) is a unstable node or a

unstable focus according as

C2 ≥ 4B(Dk2
2 − ωk1) (38)

or
C2 ≤ 4B(Dk2

2 − ωk1) (39)
This means that there is a heteroclinic orbit con-
necting the saddle-node or saddle-focus point in equa-
tions (36, 37). On the other hand, shock waves can exist
in the system. Therefore, for the saddle-node heteroclinic
orbit, equation (35) has the following form particular so-
lution

φ =
m

[1 + en(θ−θ0)]2
· (40)

When substituting equation (40) into equation (35), we
can obtain the following relations

m = −12
25

C2

AB
(41)

n = − C

5Bk1
(42)

Dk2
2 − ωk1

k2
1C

2
=

6
25B

· (43)
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Hence we get a particular solution of equation (35)

φ = − 3C2

25AB

[
1 − tanh

C

10Bk1
(θ − θ0)

]2

. (44)

Equation (43) indicates that 4B(Dk2
2−ωk1)

C2 = 24k2
1

25 < 1,
which means that the condition (38) satisfied. Also, it is
clear from equation (44) that φ → φ∗1 as ξ → +∞ and
φ→ φ∗2 as ξ → −∞. That is, the particular solution given
by equation (44) corresponding to the heteroclinic orbit
connecting the saddle-node points. On the other hand,
shock wave can exist in the KP-Burgers equation (28).

5 Conclusions

In summary, A KP-Burgers equation describing the
dust acoustic waves in dusty plasmas with non-adiabatic
dust charge fluctuation is derived by the perturbation
method.A shock solution of the KP-Burgers equation is
obtained. It is show that one dimensional shock wave can
exist even if the system is under the transverse perturba-
tion. The non-adiabatic charge variation of the dust par-
ticles would modifies the shock wave properties because
the coefficients in KP-Burgers equation are related to the
dust charge variation effects.
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